Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

The application of VHDL-AMS multi-domain HV simulation to the power performance and the fuel economy during warming up process

2011-05-17
2011-39-7245
In order to reduce CO2, EV and Hybrid Vehicle (HV) are effective. Those type vehicles have different power train from conventional vehicle. Those new power trains drastically improve their efficiency from conventional vehicle with keeping same or superior power performance. On the other hand, those vehicles have the issue for thermal energy shortage during warming up process. The thermal energy is very large. The thermal energy seriously affect on the fuel economy for HV and the mileage for EV. In this paper, the power performance, the fuel economy and the effect of heat energy recovery from the exhaust gas are discussed for HV. For the power performance, the simulated acceleration time of 0-100km/h was 11.8sec and the measured vehicle time was 11.9sec. The error between simulation and actual measurement result was 1.2%. As for the fuel economy, the energy management using exhaust gas heat exchange system improved 10.3% of the fuel consumption during warming up.
Technical Paper

Development of Toyota Plug-in hybrid system

2011-05-17
2011-39-7219
Toyota has been introducing several hybrid vehicles (HV) as a countermeasure to concerns related to the automotive mobility like CO2 reduction, energy security, and emission reduction in urban areas. A next step towards an even more effective solution for these concerns is a plug-in hybrid vehicle (PHV). This vehicle combines the advantages of electric vehicles (EV), which can use clean electric energy, and HV with it's high environmental potential and user-friendliness comparable to conventional vehicles such as a long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space. The vehicle achieves a CO2 emission of 59g/km and meets the most stringent emission regulations in the world. The new PHV is a forerunner of the large-scale mass production PHV which will be introduced in a year.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
Technical Paper

Development of the Chemical Recycling Technology of Glass Fiber Reinforced PA6 Parts

2001-03-05
2001-01-0694
Recently, the plastic material is positively introducing for automotive parts due to the Needs of vehicle weight reduction and cost saving. On the other hand, the countermeasure for scrapped car is a big subject to need to consider as a car maker. Therefore, the development of recycling technology for plastic parts has been necessary. In this study, we tried to develop recycling technology for glass fiber reinforced Polyamide6(PA6) which is applied to various automotive parts like an air intake manifold. As a recycling technique, we focused on the chemical recycling which can reclaim raw material of PA6(ε- caprolactams) from the post-consumer automotive parts. The chemical recycling we selected can be put on a higher priority because it has possibility to utilize the limited resource repeatedly. As a result, we could retain high purity of ε- caprolactams using our following two techniques which make possible to recycle Polyamide 6 materials. One is to separate PA6 from glass fiber.
Technical Paper

Studies on Carbon Canester to Satisfy LEVII EVAP Regulations

2000-03-06
2000-01-0895
Recently, the California Air Resources Board (CARB) has proposed a new set of evaporative emissions and “Useful Life” standards, called LEVII EVAP regulations, which are more stringent than those of the enhanced EVAP emissions regulations. If the new regulations are enforced, it will become increasingly important for the carbon canister to reduce Diurnal Breathing Loss (DBL) and to prevent deterioration of the canister. Therefore, careful studies have been made on the techniques to meet these regulations by clarifying the working capacity deterioration mechanism and the phenomenon of DBL in a carbon canister. It has been found that the deterioration of working capacity would occur if high boiling hydrocarbons, which are difficult to purge, fill up the micropores of the activated carbon, and Useful Life could be estimated more accurately according to the saturated adsorption mass of the activated carbon and the canister purge volume.
Technical Paper

Development of Vapor Reducing Fuel Tank System

2001-03-05
2001-01-0729
In succession to the world-first introduction of a mass production gasoline hybrid passenger car into the Japanese market in 1997, Toyota also has introduced an enhanced version of the above to the US and European markets in 2000. Upon introduction of Toyota Hybrid System (THS) into the US market, a drastic reduction of gasoline vapor evaporation from the fuel tank was necessary, in order to meet the most stringent exhaust emission (SULEV) and evaporative emission standards in the world. In order to meet this requirement, a fuel tank system named “Vapor Reducing Fuel Tank System” was developed. This is the first commercial application in the world to use a variable tank volume to drastically reduce gasoline vapor generation.
Technical Paper

Development of the Automotive Exhaust Hydrocarbon Adsorbent

2001-03-05
2001-01-0660
The hydrocarbon adsorption volume character of zeolite was studied. Specifically, the relationship between aluminum content and zeolite hydrocarbon adsorption was investigated, as a potential hydrocarbon adsorbent for exhaust gas. The study also analyzed the relationship between hole diameter and zeolite hydrocarbon adsorption. It was found that hydrocarbon adsorption increased with decreasing aluminum content. Zeolite with a pore size approximately 0.1nm greater than the diameter of hydrocarbon molecules showed the best performance. Zeolites with two different pore sizes were mixed, and succeeded in adsorbing hydrocarbons of carbon number 3 and above. Silver (Ag) ion exchanged zeolite was also used to increase the adsorption of exhaust gas hydrocarbons, including those of carbon number 2.
Technical Paper

Mixture Preparation and HC Emissions of a 4-Valve Engine with Port Fuel Injection During Cold Starting and Warm-up

1995-02-01
950074
In order to reduce tail-pipe hydrocarbon emissions from SI gasoline engines, rapid catalyst warm-up and improvement of catalyst conversion efficiency are important. There are many reports which have been published by manufacturers and research institutes on this issue. For further reduction of tail-pipe hydrocarbon emissions, it is necessary to reduce engine-out hydrocarbon emissions and to improve after treatment, during the time the catalyst is not activated. This paper quantitatively analyzed the fuel amount of intake port and cylinder wall-wetting, burned fuel and engine-out hydrocarbon emissions, cycle by cycle in firing condition, utilizing a specially designed analytical engine. The effect of mixture preparation and fuel properties for engine-out hydrocarbon emissions, during the cold engine start and warm-up period, were quantitatively clarified.
Technical Paper

Reduction of Diesel Particulate Matter by Oil Consumption Improvement Utilizing Radioisotope Tracer Techniques

1997-05-01
971630
A study was conducted to reduce unburned oil fractions in diesel particulate matter (PM) by improving oil consumption. A method utilizing radioisotope 14C was developed to measure the unburned oil fractions separately for the four paths by which oil is consumed: valve stem seals, piston rings, PCV system, turbocharger. The conversion ratio of oil consumption to PM was calculated by comparing the unburned oil emission rates with oil consumption rates, which were obtained by the use of the 35S tracer method. The result in an experimental diesel engine shows the highest conversion ratio for the oil leaking through the valve stem seals. The modifications to the engine were thereby focused on reducing the leakage of the stem seals. This stem seal modification, along with piston ring improvements, reduced oil consumption, resulting in the unburned oil fractions in PM being effectively reduced.
Technical Paper

New Technology for Reducing the Power Consumption of Electrically Heated Catalysts

1994-03-01
940464
A new heating strategy for electrically heated catalysts has been developed which reduces power consumption while achieving the desired hydrocarbon conversion. The relationship between catalyst volume and power consumption is presented. Observations of catalytic reactions by a thermoviewer camera and mathematical simulations are used to optimize the heating pattern. Significant reductions in power consumption, while maintaining conversion efficiency, are reported by heating only the front face of the catalyst. However, prior to mass production additional work is required to improve durability, and reliability and to resolve manufacturing issues.
Technical Paper

Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature

2001-03-05
2001-01-0655
Recently, the smokeless rich diesel combustion had been demonstrated [1]. This can realize smokeless and NOx-less combustion by using a large amount of cooled EGR under a near stoichiometric and even in a rich operating condition. We focus on the effects of reducing diesel combustion temperature on soot reduction.
X